Nonlocal Ginzburg-Landau equation for cortical pattern formation.
نویسندگان
چکیده
We show how a nonlocal version of the real Ginzburg-Landau (GL) equation arises in a large-scale recurrent network model of primary visual cortex. We treat cortex as a continuous two-dimensional sheet of cells that signal both the position and orientation of a local visual stimulus. The recurrent circuitry is decomposed into a local part, which contributes primarily to the orientation tuning properties of the cells, and a long-range part that introduces spatial correlations. We assume that (a) the local network exists in a balanced state such that it operates close to a point of instability and (b) the long-range connections are weak and scale with the bifurcation parameter of the dynamical instability generated by the local circuitry. Carrying out a perturbation expansion with respect to the long-range coupling strength then generates a nonlocal coupling term in the GL amplitude equation. We use the nonlocal GL equation to analyze how axonal propagation delays arising from the slow conduction velocities of the long-range connections affect spontaneous pattern formation.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملWeakly Nonlocal Irreversible Thermodynamics- the Ginzburg-landau Equation
The variational approach to weakly nonlocal thermodynamic theories is critically revisited in the light of modern nonequilibrium thermody-namics. The example of Ginzburg-Landau equation is investigated in detail.
متن کاملNonlocal complex Ginzburg-Landau equation for electrochemical systems.
By means of an extended center-manifold reduction, we derive the nonlocal complex Ginzburg-Landau equation (NCGLE) valid for electrochemical systems with migration coupling. We carry out the stability analysis of the uniform oscillation, elucidating the role of the nonlocal coupling in electrochemical systems at the vicinity of a supercritical Hopf bifurcation. We apply the NCGLE to an experime...
متن کاملA Meshless Method Using Radial Basis Functions for the Numerical Solution of Two–Dimensional Complex Ginzburg–Landau Equation
The Ginzburg–Landau equation has been used as a mathematical model for various pattern formation systems in mechanics, physics and chemistry. In this paper, we study the complex Ginzburg–Landau equation in two spatial dimensions with periodical boundary conditions. The method numerically approximates the solution by collocation method based on radial basis functions (RBFs). To improve the numer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 78 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2008